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Chern-Simons theory

For a general gauge field A the Chern-Simons action is

@ 3 (2+1) dimensional space-time
@ Invariant under gauge transformations up to total derivatives
@ No metric in the definition of the action (topological)
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Schrédinger non-linear model

The action of the Schrédinger model
. 1 1
Su= [ dexution - 5lowP - JePlul

@ Invariant under space-time translations

@ Invariant under space rotations

@ Invariant under Gallilean boosts (includes phase factor for )

@ Invariant under scale transformation (f — A\2t, x — Ax, 1) — A~ 1))
@ Invariant under special conformal transformation

@ Invariant under global U(1) phase transformation
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Jackiw-Pi model

. 1 1
§=Sis + [ did?xiiDw - Dl ~ 5ePlul’
D[ =0 — ieAt
D,' =0 — ieA,-

@ Because S is purely topological it has all the symmetries of the
Schrédinger model

@ The global U(1) symmetry is now a local U(1) gauge symmetry

G.C. Stavenga (Fermilab) Vortices in the Jackiw-Pi model on the lattice



Quantum mechanics of the Jackiw-Pi model

@ Due to renormalization the coupling constants are now running.

@ At 1-loop e does not renormalize

® 3(97) = 2 (9h — &%)

@ Thus at the special point g& = ie—rs conformal invariance is
preserved
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Equations of motion

@ e.o.m. scalar potential B = ep = ef1)|2

@ e.0.m. vector potential E; = eejiJ;

@ Schrédinger equation idyy = 2 D% — egyp — g2[y[2y
® p= [y

® J= J(v*Dy — (Dy) )
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Hamiltonian

The Hamiltonian of the system is given by
H= [y ipvp + Sl
2 2
We introduce D = —-(D; + iDy) which satisfy

V2

%02 =D.D.~2B=D,D +.B
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Hamiltonian

The Hamiltonian can thus be written
1
H= [ XD + 5(eP = P’

Thus there exist stationary zero-energy solutions when
@ D,p=0andg?>+e*>=0
@D yp=0andg?>—-e*=0

exactly when the theory is conformal QM at 1-loop
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Vortex solutions

Solving D, 1) = 0 leads to the Liouville equation

Alogp+€°p=0
These have the general solution

4 |F(2)P

p(2) = o
B = e napy

f is an meromorphic function (Horvathy and Yera [9805161]).

The poles of f are the centers of the vortices.
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Clasification of the solutions on the plane

On the plane all solutions p are given by

@)= o)

and vice versa (Horvathy and Yera [9805161]).

deg(P) < deg(Q)
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Plane examples 1
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Plane examples 2
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Total magnetic flux

712
/ Pxp = / x |||f|2 _ deg(Q)4n

Magnetic flux is quantized in units q = Z = 2deg(Q)
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Solutions on the torus

@ Impose periodic BC p(z + wj) = p(2)

@ This not equal to imposing periodic BC on i) and A
@ Naively: ¢ = [;B= [,;A=0

@ However we will see g = 5~ =n
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Classification of solutions on the torus

Periodic boundaries for p means that

Pf = Pg
9(2) = f(z+w)

Thus we need to classify which functions f, g lead to the same p
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Classification of solutions on the torus

Insight: 1f‘zz‘|2 is the metric of the riemann sphere.
Thus p is invariant under rotations SO(3) = PSU(2) of the Riemann

sphere.
af(z)+b

9(z) = of(2)+d ‘¢ (3
Theorem: if and only if

b) € PSU(2)
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Classification of solutions on the torus

f(z + wi) = U(wi)f(2), Uw;) € PSU(2)

Uf(a) = S8

Therefor one has a homomorphism

o : N — PSU(2)
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Classification of solutions on the torus

Two options:

@ [p7(w1), dr(w2)] =0
¢y lift to a representation ¢f : A — SU(2)

® {¢r(w1), dr(w2)} =0
¢y lift to a representation ¢ : A* — SU(2)
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Commuting case

One can diagonalize the generators:

i0;/
or(w) = (9% 92)
Therefor one obtains '
f(z +wi) = €f(z)

Elliptic functions of the second-kind.
A complete mathematical classifications exist

G.C. Stavenga (Fermilab) Vortices in the Jackiw-Pi model on the lattice



Anti-commuting case

Generators are

Therefor one obtains
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Anti-commuting case

Suppose fy is a solution, then define

9(2) = (2)/%(2)
- —9(z)+1
") =gz +1

Then
h(z +wy) = h(2)
h(z +wp) = —h(2)

h elliptic of the second kind with specific phase.
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Anti-commuting case

For fy we use the Ansatz based on [Olesen Phys. Lett. B265 361-365]

732w 2w, T b
fo(z) = === —
0( ) CPQW1 2wy T d

where Py, o, is the Weierstrass p-function defined on a lattice with
double periods.
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Olesen solution

Olesen’s solution (on rectangular grid)
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Magnetic charge

@ Commuting case: g=2n
@ Anti-commuting case: g=2n+1

Like with spin one gets half-integer charge from the projective
representation.
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Summary and outlook

@ A complete classification of all vortex solution on the torus has
been given.

@ May have some application in condensed matter systems.

@ I'd like to understand the relation between the vortices and the
vanishing of the conformal anomaly.

@ Higher genus surfaces?
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